Importance of finite-temperature exchange correlation for warm dense matter calculations.

نویسندگان

  • Valentin V Karasiev
  • Lázaro Calderín
  • S B Trickey
چکیده

The effects of an explicit temperature dependence in the exchange correlation (XC) free-energy functional upon calculated properties of matter in the warm dense regime are investigated. The comparison is between the Karasiev-Sjostrom-Dufty-Trickey (KSDT) finite-temperature local-density approximation (TLDA) XC functional [Karasiev et al., Phys. Rev. Lett. 112, 076403 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.076403] parametrized from restricted path-integral Monte Carlo data on the homogeneous electron gas (HEG) and the conventional Monte Carlo parametrization ground-state LDA XC [Perdew-Zunger (PZ)] functional evaluated with T-dependent densities. Both Kohn-Sham (KS) and orbital-free density-functional theories are used, depending upon computational resource demands. Compared to the PZ functional, the KSDT functional generally lowers the dc electrical conductivity of low-density Al, yielding improved agreement with experiment. The greatest lowering is about 15% for T=15 kK. Correspondingly, the KS band structure of low-density fcc Al from the KSDT functional exhibits a clear increase in interband separation above the Fermi level compared to the PZ bands. In some density-temperature regimes, the deuterium equations of state obtained from the two XC functionals exhibit pressure differences as large as 4% and a 6% range of differences. However, the hydrogen principal Hugoniot is insensitive to the explicit XC T dependence because of cancellation between the energy and pressure-volume work difference terms in the Rankine-Hugoniot equation. Finally, the temperature at which the HEG becomes unstable is T≥7200 K for the T-dependent XC, a result that the ground-state XC underestimates by about 1000 K.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonempirical Semi-local Free-Energy Density Functional for Warm Dense Matter

The potential for density functional theory calculations to address, reliably, the extreme conditions of warm dense matter is predicated upon having an accurate representation for the free energy functional over a wide range of state conditions. Distinct from the ground-state situation, no such exchange-correlation functional exists. We remedy that with a systematic, constraint-based constructi...

متن کامل

Comparison of density functional approximations and the finite-temperature Hartree-Fock approximation in warm dense lithium.

We compare the behavior of the finite-temperature Hartree-Fock model with that of thermal density functional theory using both ground-state and temperature-dependent approximate exchange functionals. The test system is bcc Li in the temperature-density regime of warm dense matter (WDM). In this exchange-only case, there are significant qualitative differences in results from the three approache...

متن کامل

Exchange-correlation energy for the three-dimensional homogeneous electron gas at arbitrary temperature

We fit finite-temperature path integral Monte Carlo calculations of the exchange-correlation energy of the 3D finite-temperature homogeneous electron gas in the warm-dense regime [rs ≡ (3/4πn)1/3a−1 B < 40 and ≡ T/TF > 0.0625]. In doing so, we construct a Padé approximant which collapses to Debye-Hückel theory in the high-temperature, low-density limit. Likewise, the zero-temperature limit matc...

متن کامل

Current Issues in Finite-T Density-Functional Theory and Warm-Correlated Matter

Finite-temperature density functional theory (DFT) has become of topical interest, partly due to the increasing ability to create novel states of warm-correlated matter (WCM). Warm-dense matter (WDM), ultra-fast matter (UFM), and high-energy density matter (HEDM) may all be regarded as subclasses of WCM. Strong electron-electron, ion-ion and electron-ion correlation effects and partial degenera...

متن کامل

Warm Dense Matter Demonstrating Non-Drude Conductivity from Observations of Nonlinear Plasmon Damping.

We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E

دوره 93 6  شماره 

صفحات  -

تاریخ انتشار 2016